OpenCV-Python实现简单数字识别OCR

我们知道,OpenCV是Python中用来处理图像识别的一个很强大的库。问题从简单的入手,在OpenCV-Python(cv2)中实现“数字识别OCR”。非产品级别的解决方案,主要为了学习。我们希望在OpenCV中学习KNearest和SVM功能。

假设我们有每个数字的100个样本(即图像)。并一起训练OpenCV示例附带的示例letter_recog.py。我们着手弄清楚下列问题:
1)什么是letter_recognition.data文件?如何从自己的数据集构建该文件?
2)results.reval()表示什么?
3)如何使用letter_recognition.data文件(KNearest或SVM)编写一个简单的数字识别工具?

解决方法如下:

想要的是在OpenCV中使用KNearest或SVM功能来实现一个简单的OCR。办法应该如下 (只是为了学习如何使用KNearest进行简单的OCR目的):
1)我的第一个问题是关于openCV示例附带的letter_recognition.data文件。我想知道那个文件里面是什么。
它包含一封信,以及该信的16个特征。
this SOF帮助我找到它。这些16个功能在文档Letter Recognition Using Holland-Style Adaptive Classifiers中进行了说明。
(虽然我不了解一些结尾的功能)
2)由于我知道,在不了解所有这些功能的情况下,很难做到这一点。我尝试了一些其他的论文,但对初学者来说,这些都是有点困难的。
So I just decided to take all the pixel values as my features.(我并不担心准确性或表现,我只是想让它工作,至少在最不准确的情况下)
我拍下了我的训练资料:
enter image description here
(我知道培训数据少了,但是由于所有的字母和字体大小相同,所以我决定尝试这样做)。
为了准备训练数据,我在OpenCV中编写了一个小代码。它做以下事情:
A)它加载图像。
B)选择数字(显然通过轮廓查找和对字母的面积和高度应用约束以避免错误检测)。
C)绘制围绕一个字母的边界矩形,并等待key press manually。这一次我们自己按数字键对应的字母在框中。
D)按下相应的数字键后,将此框重新调整为10×10,并将数组中的100个像素值(这里为样本)和相应的手动输入的数位保存在另一个数组中(这里为响应)。
E)然后将这两个数组保存在单独的txt文件中。
在数字手动分类结束时,列车数据(train.png)中的所有数字都由我们自己手动标记,图像如下图所示:
enter image description here
以下是我用于上述目的的代码(当然不是那么干净):

import sys

import numpy as np
import cv2

im = cv2.imread('pitrain.png')
im3 = im.copy()

gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray,(5,5),0)
thresh = cv2.adaptiveThreshold(blur,255,1,1,11,2)

#################      Now finding Contours         ###################

contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

samples =  np.empty((0,100))
responses = []
keys = [i for i in range(48,58)]

for cnt in contours:
    if cv2.contourArea(cnt)>50:
        [x,y,w,h] = cv2.boundingRect(cnt)

        if  h>28:
            cv2.rectangle(im,(x,y),(x+w,y+h),(0,0,255),2)
            roi = thresh[y:y+h,x:x+w]
            roismall = cv2.resize(roi,(10,10))
            cv2.imshow('norm',im)
            key = cv2.waitKey(0)

            if key == 27:  # (escape to quit)
                sys.exit()
            elif key in keys:
                responses.append(int(chr(key)))
                sample = roismall.reshape((1,100))
                samples = np.append(samples,sample,0)

responses = np.array(responses,np.float32)
responses = responses.reshape((responses.size,1))
print "training complete"

np.savetxt('generalsamples.data',samples)
np.savetxt('generalresponses.data',responses)

现在我们进入培训和测试部分。
对于我测试的部分,我使用下面的图像,它有相同类型的字母,我用来训练。
enter image description here
对于培训,我们做如下
A)加载我们之前已经保存的txt文件
B)创建一个我们正在使用的分类器的实例(这里是KNearest)
C)然后我们使用KNearest.train函数来训练数据
为了测试目的,我们做如下:
A)我们加载用于测试的图像
B)如前所述处理图像,并使用轮廓方法提取每个数字
C)为其绘制边框,然后调整为10×10,并将其像素值存储在数组中,如前所述。
D)然后我们使用KNearest.find_nearest()函数来找到我们给出的最接近的项目。 (如果幸运,它会识别正确的数字。)
我在下面的单一代码中包括了最后两个步骤(培训和测试):

import cv2
import numpy as np

#######   training part    ############### 
samples = np.loadtxt('generalsamples.data',np.float32)
responses = np.loadtxt('generalresponses.data',np.float32)
responses = responses.reshape((responses.size,1))

model = cv2.KNearest()
model.train(samples,responses)

############################# testing part  #########################

im = cv2.imread('pi.png')
out = np.zeros(im.shape,np.uint8)
gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray,255,1,1,11,2)

contours,hierarchy = cv2.findContours(thresh,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)

for cnt in contours:
    if cv2.contourArea(cnt)>50:
        [x,y,w,h] = cv2.boundingRect(cnt)
        if  h>28:
            cv2.rectangle(im,(x,y),(x+w,y+h),(0,255,0),2)
            roi = thresh[y:y+h,x:x+w]
            roismall = cv2.resize(roi,(10,10))
            roismall = roismall.reshape((1,100))
            roismall = np.float32(roismall)
            retval, results, neigh_resp, dists = model.find_nearest(roismall, k = 1)
            string = str(int((results[0][0])))
            cv2.putText(out,string,(x,y+h),0,1,(0,255,0))

cv2.imshow('im',im)
cv2.imshow('out',out)
cv2.waitKey(0)

下面是我得到的结果:
enter image description here
这里以100%的精度工作。我假设这是因为所有的数字都是相同的和相同的大小。
但是无论如何,这对初学者来说是一个很好的开始。

 

希望有用。

By Codewenda.com

python安装cv2 (opencv)

在图像处理中使用到cv2 module,那么怎样安装cv2呢?

直接使用pip install cv2会找不到资源(No matching distribution found for cv2)

cv2的pypi package名字为:opencv-python
安装命令为:

pip3 install opencv-python

测试:

python
>>>import cv2

by Code问答